Algorithmic Verification

LTL Model Checking and Biichi Automata

Dr. Liam O'Connor
CSE, UNSW (for now)
Term 1 2020

Biichi Automata LTL Model Checking LTL to Biichi Automata
9000000000 000 0000000000

LTL Model Checking

M E

Kripke Structure 777 LTL Formula
L(Ma) € Lipa)
Biichi Automaton Biichi Automaton

Biichi Automata

Biichi Automata are like finite automata, but their languages are
of infinite-length strings, so they work well for behaviours € (2P)v.

Biichi Automata
0@0000000

Bilichi Automata
Definition
A (generalized) Biichi automaton is a 5-tuple (Q, /, X, 0, F) where
@ @ is a set of states.
@ /| C Q is a set of initial states.
@ X is our alphabet of actions.
@ §:(Q x X)— 29 is our transition relation.
@ F C @ is a set of final states.

Language
We consider o € L(A) for a Biichi automaton A iff it visits a

particular final state infinitely often. More formally, define
inf(p) = { g | g appears infinitely often in p }, then we say

trace(p) € L(A) < inf(p) N F # 0

Biichi Automata
00®000000

@ acaaaaaaa... Accepted
@ acbcbcbeb... Accepted
@ acbbbbbbb... Rejected

Biichi Automata LTL Model Checking LTL to Biichi Automata
000e00000 000 0000000000

Exercise

Let ¥ = {0,1}. Define Biichi automata for the following

languages.
@ [={veX¥|0occursin v exactly once }
@ Lo ={veX¥]|every 0is followed at least one 1}
e [3={v €X¥]| v contains infinitely many 1s}
o Ly = (01)x¥

Biichi Automata
0000®0000

Closure Properties

Biichi Automata are closed under:
@ Union (same as NFAs)
@ Intersection (as we will show)

o Complement (as we will refer to textbooks — it's hard)

Biichi Automata
00000@000

—1{ (Po, qo)

Intersection of GBAs

(p1, 90)

(po, q1)

NFA product doesn't work!

(p1,q1)

Biichi Automata
000000800

Triple Product

An accepting cycle of a product of Biichi automata P x @ must
cycle through accepting states of both P and Q infinitely often.
Arbitrarily, we shall say it must alternate by visiting a final state of
Q@ then P then Q and so on. This doesn't affect expressivity
because we are only concerned with infinite strings.

Key idea
Make three copies of the product: P x Q x {0,1,2}.
@ Copy '0" is marked with initial states /p X Ig.

@ Copy '2' is entirely marked as final states.
@ Transition relation like normal product, but:

e We move from copy 0 to copy 1 when moving to a state € Fy.
o We move from copy 1 to copy 2 when moving to a state € Fp.
o All transitions from copy 2 move back to copy 0.

Biichi Automata
000000080

Biichi Automata LTL Model Checking LTL to Biichi Automata
00000000e 000 0000000000

Buchi Product

Let Al — (Q17 I]_,Z]_,51, Fl) and A2 — (Q27 /2,22,52, F2)

Definition
Define An with Q = Q1 x Q2 x {0,1,2}, and I = I, x k x {0},

>=3Y1NXxsand F = Q1 x Q2X{3}.
We define § as follows:

((q17q270)7a,(qiaqé70)) €d iff (qiva, qll) € 0 (I = 1,2) A qi ¢ F
((q17q27 0)7%(‘717‘75»1)) €o iff (ina, Q,I) € 51' (’ = 172) A qi €EhR
((qlaq27)7aa(qiaqé71)) S 0 iff (qHa q,/) S 61 (I = 1,2) A qi ¢ F2
((qlaq27)737(qiaq£72)) €o iff (qi7ay q,/) € 0; (l = 172) A qi S
((a1, g2,)73,(q1,Q£,0)) €dé iff (qgi,a, ql’) €46; (i=1,2)

LTL Model Checking
€00

LTL Model Checking

L(Au) C L(As)
L(Am) N L(As)C =0
L(Aw) N L(Ae) =0
L(Ay x A_e) =0

We still need to know how to:
@ Determine if L(A) = () for a Biichi automaton A.
o Convert a Kripke structure M to a Biichi automaton Ay,

@ Convert a LTL formula ¢ to a Biichi automaton Ag.

LTL Model Checking
fo] To)

Biichi from Kripke

We add a new initial state, move labels on the states to all
incoming edges, and make all states final.

How to convert

LTL Model Checking
ooe

Buchi Automata Emptiness

Theorem (Biichi pumping)

Given a Biichi Automaton A = (Q,/,X,0, F) then L(A) # 0 iff
there exists v, w € X* with lengths < |Q| such that vw* € L(A).

We need to find a final state that is:
@ Reachable from an initial state.
@ Reachable from itself — a cycle.

How to detect cycles?
We use Strongly Connected Components!. Many algorithms
exist (see online).

LTL to Biichi Automata
#000000000

How to convert from LTL formulae to Biichi Automata? For
atomic formulae, it's straightforward:

@ pAqg
Y
{p,q
e p=g
Y
{p,q}
-p

We can manually construct them for temporal formulae, but how
to do so systematically?

LTL to Biichi Automata
©®00000000

Methods of LTL to Biichi

Many exist. All are complicated.

@ Tableau Methods (Kersten, Manna, McGuire, Pnueli or Geth,
Peled, Vardi, Wolper)

@ Automata Theoretic (Vardi)
@ Local and Eventuality Automata (Vardi, Wolper)

Local and Eventuality Automata
© Reduce number of operators to just UNTIL and X.

@ Construct a local automaton for ® — describes behaviours
that satisfy the safety component of ®.

© Construct a eventuality automaton for ® — ensures
“termination”, the liveness aspect of ®.

© Intersect the two automata, then reduce the alphabet to just
atomic propositions.

Biichi Automata LTL Model Checking LTL to Biichi Automata
000000000 000 00@0000000

Closure and Maximal Subsets

Closure

The closure CI(®) of an LTL formula ® is the set of all
subformulae of ® and their negation.

What is the closure of ® U @ ?

Maximal Subsets

Define Sub(®) of an LTL formula ® as the set of all maximal
subsets of CI(®) that are locally consistent (not contradictory).

[o]e] 000e000000

Local Automaton

Definition
The local automaton for Aé, for a formula @ is defined as
(Q,1,%,6, F) where:

@ Q = Sub(®)
o /={SeSub(®)|veS}
o ¥ = 2CI®)
e F=1
@ gcd(p,a)ifa=pand
e Xpep if pegq

e pUvyep if Yep
oo pepA(pUy)eq

Biichi Automata LTL Model Checking LTL to Biichi Automata

Whats the local automaton for X@® ?

LTL to Biichi Automata
0000800000

Example

Whats the local automaton for ® U ® 7
(the edge actions are always just the origin state, so they're omitted)

A

LTL to Biichi Automata
©00000@0000

Eventuality Automaton

The local automaton accepts just the safety part of our formula.
So, our example on the previous slide would accept an infinite
sequence of

To ensure that the second part of UNTIL actually happens, we
use an eventuality automaton.

Eventuality Automaton

The eventuality automaton Ag for a formula @ is defined as
(Q,1,%,0, F) where the states Q are all sets of UNTIL formulae
in CI(®), the initial and final state is (), the actions X are the same
as the local automaton Sub(®), and ¢ is defined as follows:
g € (p, a) iff a is consistent with p and
When p=10: Forall (p U) € aonehas (pUy)eqiffiy¢a
When p #£ () : For all (¢ U %)) € p one has (p U) € qiff i) ¢ a

Biichi Automata LTL Model Checking LTL to Biichi Automata
000000000 000 000000e000

Example

The current state of the eventuality automaton reflects the set of
UNTIL formulae we are waiting on.
Example for ® U @ :

No other consistent edges!

{eue o -0}

oue

LTL to Biichi Automata
0000000800

Alphabet Reduction

Our model automata Ay has just atomic propositions for actions,
but our formula automaton Aé, X Ag includes temporal
propositions in the actions.

Solution

After computing the product of local and eventuality automata,
however, we can simply remove all negations and temporal
propositions from the actions, leaving only atomic propositions
behind.

Then we can compute the final product of our model with our
negated formula as normal.

Biichi Automata LTL Model Checking LTL to Biichi Automata
000000000 000 0000000000

Complexity

@ Each node in a local automaton contains each subformula,
|Q| exponential in size of formula.

Q|

@ Eventuality automata has each combination of UNTILs,
exponential in number of UNTILs.

@ Then product, reduction to reachable states, alphabet
reduction, and final product.

@ Then SCCs to find cycles, check emptiness.

Tons of overhead. Other methods are smarter (but even more
complicated).

SPIN

Liam: Whirlwind tour of SPIN, preview of next lecture

Biichi Automata LTL Model Checking LTL to Biichi Automata
000000000 [e]e]e} @000000000

Bibliography

@ Baier/Katoen: Principles of Model Checking, Section 5.2

	Büchi Automata
	LTL Model Checking
	LTL to Büchi Automata
	

